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Learning goals

• Able to explain and apply basic tools for quantitative data analysis, 
namely:
• Being able to determine whether experimental groups are different
• Being able to determine if a specific variable explains the difference?

• Get acquainted with computational tools for quantitative data analysis

• Able to explain basic qualitative analysis tools, namely a thematic analysis 
pipeline and coding for observational data
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Outline

• Quantitative analysis
• Are my groups different?
• Does a specific variable explain the difference?
• Tools for quantitative data analysis

• Qualitative analysis
• Thematic analysis
• Analyzing observational data (e.g., videos)
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16 30 control 554 75

ADATASET

pptID age condition score heartrate

1 22 control 643 76

2 26 cdt1 234 72

3 24 control 356 73

4 24 cdt1 587 75

5 29 cdt1 561 75

6 31 control 544 75

7 20 control 470 74

8 23 cdt1 212 72

9 23 control 388 73

10 22 cdt1 201 72

11 28 control 278 72

12 29 cdt1 599 76

13 27 control 366 73

14 21 cdt1 597 75

15 22 cdt1 571 75
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Is there a difference?

◦ Are the distributions the same?
◦ How big the difference?
◦ Could chance explain that difference?
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IS THE DISTRIBUTION THE SAME?

Data often (but not always!) follows a normal (or Gaussian)
distribution. Two parameters: mean µ and variance σ2.
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K. Baraka - SIR '21 - Data analysis for HRI 14

Adapted from Séverin Lemaignan (available under the CC Attribution-Share alike license)

http://en.wikipedia.org/wiki/Normal_distribution
https://creativecommons.org/licenses/by-sa/4.0/


IS THE DISTRIBUTION THE SAME?

Data often (but not always!) follows a normal (or Gaussian)
distribution. Two parameters: mean µ and variance σ2.
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µ = 0, σ 2 = 5.0

µ = − 2, σ 2 = 0.5

µ = 0, σ 2 = 1.0

µ = 0, σ 2 = 0.2

Many statistical tests only work if the underlying data follows a
normal distribution – so-called parametric tests.

You need to check that your data is normally distributed first!
(for instance, by plotting it)
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COMPAREDISTRIBUTIONS (HISTOGRAMS, DENSITY)
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COMPAREDISTRIBUTIONS (HISTOGRAMS, DENSITY)
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Control + condition group → beware the bimodal distribution!
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Show the underlying data!
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TWOADDITIONALDATASETS
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TWOADDITIONALDATASETS
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HOW BIG IS THE DIFFERENCE?
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does not account for the variance in the dataset

mean std mean std mean

cdt1 516.5 85.3 cdt1 687.3 81.5 cdt1 404.0
control 451.5 127.1 control 451.5 127.1 control 451.5

µ1 − µ2 69.2 µ1 − µ2 235.8 µ1 − µ2 47.5

K. Baraka - SIR '21 - Data analysis for HRI 24

Adapted from Séverin Lemaignan (available under the CC Attribution-Share alike license)

https://creativecommons.org/licenses/by-sa/4.0/


HOW BIG IS THE DIFFERENCE?

control cdt1
condition

700

600

500

400

300

200

100

0

sc
or

e

control cdt1
condition

800
700

600
500

400
300

200
100

0

sc
or

e

control cdt1
condition

600

500

400

300

200

100

0

700

sc
or

e

mean std mean std mean

cdt1 516.5 85.3 cdt1 687.3 81.5 cdt1 404.0

control 451.5 127.1 control 451.5 127.1 control 451.5

µ1 − µ2 69.2 µ1 − µ2 235.8 µ1 − µ2 47.5

µ1 − µ2

!
0.62 µ1 − µ2

!
2.21 µ1 − µ2

!
0.29

K. Baraka - SIR '21 - Data analysis for HRI 25

Adapted from Séverin Lemaignan (available under the CC Attribution-Share alike license)

https://creativecommons.org/licenses/by-sa/4.0/


HOW BIG IS THE DIFFERENCE?

control cdt1
condition

700

600

500

400

300

200

100

0

sc
or

e

control cdt1
condition

800
700

600
500

400
300

200
100

0

sc
or

e

control cdt1
condition

600

500

400

300

200

100

0

700

sc
or

e

Acommon measure of effect size: Cohen’s d = µ1−µ2
σ

→ Interactive visualisation and interpretation of Cohen’s d
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DIFFERENCEDUETOCHANCE?

Astatistical hypothesis test makes an assumption about the
outcome, called the null hypothesis.

Our null hypothesis is that there is no difference between the
means of our two populations.
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DIFFERENCEDUETOCHANCE?

Astatistical hypothesis test makes an assumption about the
outcome, called the null hypothesis.

Our null hypothesis is that there is no difference between the
means of our two populations.

p-value: probability of observing the result given that the null
hypothesis is true.

⇒ Meaning of a low p-value?
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DIFFERENCE DUETO CHANCE?

Astatistical hypothesis test makes an assumption about the
outcome, called the null hypothesis.

Our null hypothesis is that there is no difference between the
means of our two populations.

p-value: probability of observing the result given that the null
hypothesis is true.

⇒ Meaning of a low p-value?

To interpret p, you need to choose a significance level α . 
For instance, 10% (0.1), 5% (0.05), 2% (0.02)...

p = 0.05
’There’s only 5% of chance of observing these distributions if my
null hypothesis is true (ie, no difference between my groups).’
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HOWTOCALCULATEP?

◦ If parametric data, Student’s t -test
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HOWTOCALCULATEP?

◦ If parametric data, Student’s t -test
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HOWTOCALCULATEP?

◦ If parametric data, Student’s t -test
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HOWTOCALCULATEP?

◦ If parametric data, Student’s t -test
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HOWTOCALCULATEP?

◦ If parametric data, Student’s t -test
◦ If non-parametric data, Mann-Whitney U-test
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HOWTO CALCULATEP?

◦ If parametric data, Student’s t -test
◦ If non-parametric data, Mann-Whitney U-test
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p 0.07

See Wikipedia page for examples and interpreation of U
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IMPACTOFN?

What is the impact of the sample size n on p?
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IMPACTOFN?

What is the impact of the sample size n on p?

The higher n, the more unlikely the difference is due to chance

↗ n ⇒  ↘ p
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BE CAREFULWITH "STATISTICALLYSIGNIFICANT"!
Gender assigned at birth iq

male 76.51

male 76.53

female 76.66

female 76.65

female 76.64

female 76.63

male 76.54

female 76.64

male 76.51

female 76.60

female 76.63

male 76.52

female 76.64

male 76.51
female 76.60
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BECAREFULWITH ”STATISTICALLYSIGNIFICANT”!

Mfemale > Mmale, p < 0.001

t statistic 12.52
p
Mean female

< 0.001
76.64

Mean male 76.54
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BE CAREFULWITH ”STATISTICALLYSIGNIFICANT”!

Mfemale > Mmale, p < 0.001

Women have higher IQ!

t statistic 12.52
p
Mean female

< 0.001
76.64

Mean male 76.54
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BE CAREFULWITH ”STATISTICALLYSIGNIFICANT”!

Mfemale > Mmale, p < 0.001

Women have higher IQ!
...wait... how big is our effect?

Mfemale − Mmale = 0.1 on a scale of 100??

t statistic 12.52
p
Mean female

< 0.001
76.64

Mean male 76.54
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BE CAREFULWITH ”STATISTICALLYSIGNIFICANT”!

Mfemale > Mmale, p < 0.001

Women have higher IQ!
...wait... how big is our effect?

Mfemale − Mmale = 0.1 on a scale of 100??

Cohen’s d
d = µ1−µ2

σ
= 4.12 ⇒ high, because σ very low

t statistic 12.52
p
Mean female

< 0.001
76.64

Mean male 76.54
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“p-hacking”

Insights from reading assignment?
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STATISTICAL POWERANALYSIS

Statistical power
The statistical power of a hypothesis test is the probability of
detecting an effect, if there is a true effect present to detect.

or:

Statistical power
The statistical power of the test is the probability that the test
correctly rejects a false null hypothesis.
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STATISTICAL POWERANALYSIS

Types of errors

◦ Type I error: Reject the null hypothesis when there is in fact
no significant effect (too optimistic!)

◦ Type I I error: Not reject the null hypothesis when there is a
significant effect (too pessimistic!)
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STATISTICAL POWERANALYSIS

Types of errors

◦ Type I error: Reject the null hypothesis when there is in fact
no significant effect (too optimistic!)

◦ Type I I error: Not reject the null hypothesis when there is a
significant effect (too pessimistic!)

The boy who cried wolf

◦ Type I error:
“there’s a wolf!” (too optimistic: there’s no wolf!)

◦ Type I I error:
...the villager don’t respond when there really is a wolf
(too pessimistic: there is indeed a wolf!)
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STATISTICAL POWERANALYSIS

Types of errors

◦ Type I error: Reject the null hypothesis when there is in fact
no significant effect (too optimistic!)

◦ Type I I error: Not reject the null hypothesis when there is a
significant effect (too pessimistic!)

Statistical power
The statistical power of a hypothesis test is the probability of
detecting an effect, if there is a true effect present to detect.
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STATISTICAL POWERANALYSIS

Types of errors

◦ Type I error: Reject the null hypothesis when there is in fact
no significant effect (too optimistic!)

◦ Type I I error: Not reject the null hypothesis when there is a
significant effect (too pessimistic!)

Statistical power
The statistical power of a hypothesis test is the probability of
detecting an effect, if there is a true effect present to detect.

Power = 1 - Type I I Error
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STATISTICAL POWERANALYSIS

Apuzzle with four pieces:

◦ Effect size
◦ Sample size
◦ Significance (chance of Type I error – found inexistant
effect)

◦ Statistical power (1 - chance of Type I I error – missed the
effect)
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EXAMPLE: POWERANALYSIS OFSTUDENT’S T-TEST

◦ Effect size: Cohen’s d > 0.8
◦ Significance: 5%
◦ Statistical power: 80%
◦ Sample size?
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EXAMPLE: POWERANALYSIS OFSTUDENT’S T-TEST

◦ Effect size: Cohen’s d > 0.8
◦ Significance: 5%
◦ Statistical power: 80%
◦ Sample size?

Using for instance Python’s
statsmodels.stats.power.TTestIndPower, we can compute that
n = 25.5 (per condition)
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EXAMPLE: POWERANALYSIS OFSTUDENT’S T-TEST

◦ Effect size: Cohen’s d > 0.8
◦ Significance: 5%
◦ Statistical power: 80%
◦ Sample size?

Using for instance Python’s
statsmodels.stats.power.TTestIndPower, we can compute that
n = 25.5 (per condition)

Agood read on statistical power analysis:

AGentle Introduction to Statistical Power and Power Analysis in
Python
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AREMYGROUPSDIFFERENT? SUMMARY

◦ 2 groups, independent measures, normal distribution:
Independent t -test
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AREMYGROUPSDIFFERENT? SUMMARY

◦ 2 groups, independent measures, normal distribution:
Independent t -test

◦ 2 groups, dependent measures, normal distribution: Paired
t -test (for instance, conditions are within-subject)
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AREMYGROUPSDIFFERENT? SUMMARY

◦ 2 groups, independent measures, normal distribution:
Independent t -test

◦ 2 groups, dependent measures, normal distribution: Paired
t -test (for instance, conditions are within-subject)

◦ 2 groups, non-parametric: Mann-Whitney U (and Wilcoxon
signed-rank test for paired samples)
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AREMYGROUPSDIFFERENT? SUMMARY

◦ 2 groups, independent measures, normal distribution:
Independent t -test

◦ 2 groups, dependent measures, normal distribution: Paired
t -test (for instance, conditions are within-subject)

◦ 2 groups, non-parametric: Mann-Whitney U (and Wilcoxon
signed-rank test for paired samples)

◦ Three or more groups: ANOVA(analysis of variance)
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AREMYGROUPSDIFFERENT? SUMMARY

◦ 2 groups, independent measures, normal distribution:
Independent t -test

◦ 2 groups, dependent measures, normal distribution: Paired
t -test (for instance, conditions are within-subject)

◦ 2 groups, non-parametric: Mann-Whitney U (and Wilcoxon
signed-rank test for paired samples)

◦ Three or more groups: ANOVA(analysis of variance)
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AREMYGROUPSDIFFERENT? SUMMARY

◦ 2 groups, independent measures, normal distribution:
Independent t -test

◦ 2 groups, dependent measures, normal distribution: Paired
t -test (for instance, conditions are within-subject)

◦ 2 groups, non-parametric: Mann-Whitney U (and Wilcoxon
signed-rank test for paired samples)

◦ Three or more groups: ANOVA(analysis of variance)

Always report an effect size (for instance, Cohen’s d)
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ARE MYGROUPS DIFFERENT? SUMMARY

◦ 2 groups, independent measures, normal distribution:
Independent t -test

◦ 2 groups, dependent measures, normal distribution: Paired
t -test (for instance, conditions are within-subject)

◦ 2 groups, non-parametric: Mann-Whitney U (and Wilcoxon
signed-rank test for paired samples)

◦ Three or more groups: ANOVA(analysis of variance)

Always report an effect size (for instance, Cohen’s d) 

Keep a close eye on your data distributions (plot them)
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Statistical tests: Interactive tools (also on the course 
webpage under Resources)

• Choosing a statistical test https://www.graphpad.com/support/faqid/1790/
• The decision tree for statistics 

https://www.microsiris.com/Statistical%20Decision%20Tree/
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Outline

• Quantitative analysis
• Are my groups different?
• Does a specific variable explain the difference?
• Tools for quantitative data analysis

• Qualitative analysis
• Thematic analysis
• Analyzing observational data (e.g., videos)
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OURDATASET

16 30 control 554 75

pptID age condition score heartrate

1 22 control 643 76
2 26 cdt1 234 72
3 24 control 356 73
4 24 cdt1 587 75
5 29 cdt1 561 75
6 31 control 544 75
7 20 control 470 74
8 23 cdt1 212 72
9 23 control 388 73

10 22 cdt1 201 72
11 28 control 278 72
12 29 cdt1 599 76
13 27 control 366 73
14 21 cdt1 597 75
15 22 cdt1 571 75
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ASSOCIATION

What is the degree of association between two
variables?

→ main tool: correlation
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PEARSONCORRELATION
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Pearson’s correlation
ρ
p

0.98
< 0.001
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PEARSONCORRELATION
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score

500 600
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Pearson’s correlation
ρ
p

0.98
< 0.001
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Pearson’s correlation
ρ
p

-0.022
0.92
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INTERPRETATION OF ρ

1 0.8 0.4 0 -0.4 -0.8 -1

Source: Wikipedia

ρ reflects the degree of linearity and direction
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INTERPRETATION OF ρ

1 0.8 0.4 0 -0.4 -0.8 -1

1 1 1 -1 -1 -1

Source: Wikipedia

ρ does not reflect the slope of the regression line
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INTERPRETATION OF ρ

1 0.8 0.4 0 -0.4 -0.8 -1

1 1 1 -1 -1 -1

0 0 0 0 0 0 0

ρ does not capture non-linear interactions

Source: Wikipedia
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OTHERMEASURESOFASSOCIATION

◦ Non-parametric ordinal data: Spearman rank correlation
◦ Association between categorical data (for instance,
relationship between ’gender’ and ’preferred style of
cuisine’): Pearson’s Chi-Square χ 2
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CORRELATION IS NOTCAUSATION
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CORRELATION IS NOTCAUSATION

Source: XKCD
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CORRELATION IS NOTCAUSATION

Be careful when tempted to write something like:

“the significant positive correlation be tween the heart
rate and the score shows that you need to have a high

heart rate to win”
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TOCONCLUDE:ANSCOMBE’SQUARTET

I II III IV

x y x y x y x y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89
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TO CONCLUDE:ANSCOMBE’S QUARTET

Property Value

Mean of x
Sample variance of x
Mean of y
Sample variance of y
Correlation between x and y
Linear regression line
Coefficient of determination of the
linear regression

9
11
7.50
4.125
0.816
y = 3.00 + 0.500x
0.67
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TOCONCLUDE:ANSCOMBE’SQUARTET
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Outline

• Quantitative analysis
• Are my groups different?
• Does a specific variable explain the difference?
• Tools for quantitative data analysis

• Qualitative analysis
• Thematic analysis
• Analyzing observational data (e.g., videos)
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THETOOLS

Data analysis tools:

◦ R:www.r-project.org
◦ Python’s Pandas: pandas.pydata.org
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THETOOLS

Data analysis tools:

◦ R:www.r-project.org
◦ Python’s Pandas: pandas.pydata.org

Jupyter notebooks are a great way of creating an interactive,
easy-to-follow, data analysis.
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(SIDE NOTEONPYTHONFORDATAANALYSIS)

Python is the leading language in data analysis/data
mining/machine learning. Learn it!
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(SIDE NOTEONPYTHONFORDATAANALYSIS)

Python is the leading language in data analysis/data
mining/machine learning. Learn it!

Large set of tools ⇒ the SciPy landscape can be confusing at first:
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(SIDE NOTEONPYTHONFORDATAANALYSIS)

Python is the leading language in data analysis/data
mining/machine learning. Learn it!

Large set of tools ⇒ the SciPy landscape can be confusing at first:

◦ numpy, scipy: the ’math’ core
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(SIDE NOTEONPYTHONFORDATAANALYSIS)

Python is the leading language in data analysis/data
mining/machine learning. Learn it!

Large set of tools ⇒ the SciPy landscape can be confusing at first:

◦ numpy, scipy: the ’math’ core
◦ ipython, Jupyter notebook: interactive Python
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(SIDE NOTEONPYTHONFORDATAANALYSIS)

Python is the leading language in data analysis/data
mining/machine learning. Learn it!

Large set of tools ⇒ the SciPy landscape can be confusing at first:

◦ numpy, scipy: the ’math’ core
◦ ipython, Jupyter notebook: interactive Python
◦ matplotlib, seaborn: data visualisation (including plotting)
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(SIDE NOTEONPYTHONFORDATAANALYSIS)

Python is the leading language in data analysis/data
mining/machine learning. Learn it!

Large set of tools ⇒ the SciPy landscape can be confusing at first:

◦ numpy, scipy: the ’math’ core
◦ ipython, Jupyter notebook: interactive Python
◦ matplotlib, seaborn: data visualisation (including plotting)
◦ pandas, statsmodels: stats, data analysis (modelled after R)
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(SIDE NOTEONPYTHONFORDATAANALYSIS)

Python is the leading language in data analysis/data
mining/machine learning. Learn it!

Large set of tools ⇒ the SciPy landscape can be confusing at first:

◦ numpy, scipy: the ’math’ core
◦ ipython, Jupyter notebook: interactive Python
◦ matplotlib, seaborn: data visualisation (including plotting)
◦ pandas, statsmodels: stats, data analysis (modelled after R)
◦ scikit-learn (along with specialist MLlibraries:
TensorFlow, pyTorch): machine learning
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(SIDE NOTEONPYTHONFORDATAANALYSIS)

Python is the leading language in data analysis/data
mining/machine learning. Learn it!

Large set of tools ⇒ the SciPy landscape can be confusing at first:

◦ numpy, scipy: the ’math’ core
◦ ipython, Jupyter notebook: interactive Python
◦ matplotlib, seaborn: data visualisation (including plotting)
◦ pandas, statsmodels: stats, data analysis (modelled after R)
◦ scikit-learn (along with specialist MLlibraries:
TensorFlow, pyTorch): machine learning

◦ anaconda (and a few other): Python distribution for scientific
computing
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Outline

• Quantitative analysis
• Are my groups different?
• Does a specific variable explain the difference?
• Tools for quantitative data analysis

• Qualitative analysis
• Thematic analysis
• Analyzing observational data (e.g., videos)
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Thematic Analysis 

• ‘... method for identifying, analyzing and reporting patterns (themes) 
within data.’ 

• Systematic method for data analysis 

• Flexible & Foundational 
• Range of data
• Large and small datasets alike
• Applied to various methodological frameworks
• Multiple approaches to align with theoretical assumptions

• Great for beginners! 

88
Braun & Clarke (2006, 2013)
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Phases of Thematic Analysis 

89

Familiarize yourself 
with your data

Generate initial 
codes

Searching for 
themes

Reviewing themes

Defining and 
naming      themes

Producing the 
report

Braun & Clarke (2006)
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1. Familiarize yourself with your data

• Transcribing data

• Reading and re-reading the data

• Noting initial ideas 

90
Braun & Clarke (2006)
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2. Generate Initial Codes

• Coding relevant features across entire dataset 

• Organizing data into meaningful groups 
• The most basic element of the raw data

• Data-driven or theory-driven? Entire data set or specific portion?

• Collating data relevant to each code 

• Manually or in qualitative software

91
Braun & Clarke (2006, 2013)
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2. Generate Initial Codes

92
Braun & Clarke (2006 – Figure 1, 2013 – Table 9.2)

K. Baraka - SIR '21 - Data analysis for HRI

Adapted from Catherine Haber (catherinehaber@gmail.com)



3. Searching for themes

• Collating codes to potential (or candidate) themes
• units of analysis 

• Start thinking about the relationship between...
• Codes, themes, different levels of themes, and the ‘Miscellaneous’

• Gathering all data relevant to each potential theme

• Using tables, mind-maps, organize theme piles with post-its, etc.

93
Braun & Clarke (2006, 2013)
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3. Searching for themes

94
Braun & Clarke (2013)
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4. Reviewing themes

• Check if themes work in relation to extracted codes 
• (Level 1)

• Generate a candidate thematic map
• Illustration of the overall conceptualization

of data patterns and relationships

• Check if themes work with the data set 
• (Level 2)

95
Braun & Clarke (2006; 2013)
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5. Defining and naming themes

• Define and refine the essence of what each theme is about 

• Refine the story the analysis tells
• e.g., sub-themes, overarching themes 

• Generate clear definitions
• Can I describe the scope in a sentence or two?

• Working titles à concise and clear names

96
Braun & Clarke (2006)
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5. Defining and naming themes

97
Braun & Clarke (2013)
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6. Producing the report

• Selection of vivid, compelling extract examples

• Final analysis of selected extracts

• Relating the analysis back to the research question and literature

• Producing a scholarly report of the analysis 

98
Braun & Clarke (2006)
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6. Producing the report

99
Braun & Clarke (2013)
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Phases of Thematic Analysis 

100

Familiarize yourself 
with your data

Generate initial 
codes

Searching for 
themes

Reviewing themes

Defining and 
naming      themes

Producing the 
report

Braun & Clarke (2006)
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Thematic Analysis

Strengths Potential Pitfalls
Flexibility ‘lack substance’

Relatively easy and quick to learn and to do Weak or unconvincing analysis 

A great ‘starter’ to qualitative analysis Mismatch between data and analytic claims

Usefully summarize key feature of a large body of 
data 

Mismatch between theory and analytic claims 

Allows for social and psychological interpretations 
of data 

Fails to spell out its theoretical assumptions, or 
clarify how it was undertaken, and for what 
purpose.

Results are accessible and understandable

101
Braun & Clarke (2006;2013)
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Computer-Assisted Qualitative Data Analysis 
Software (CAQDAS) e.g., NVivo

• Facilitate coding, as well as organization and retrieval of coded data 

• Allow for conceptual mapping to explore relationships

• Tools to assist with coding and analysis 
• Interpretative process of the researcher
• Requiring defined frameworks and approaches 

102K. Baraka - SIR '21 - Data analysis for HRI
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c.haber@trinitylaban.ac.uk

Qualitative Analysis 
Resources

103

• Braun & Clarke (2006): Using thematic analysis in psychology
• Braun & Clarke (2006) Using thematic analysis in psychology, Qualitative Research in Psychology, 3:2, 77-101.

• Braun & Clarke (2013): Section 3: Successfully analysing qualitative data
• Braun, V., & Clarke, V., (2013). Successful Qualitative Research: A practical guide for beginners. Great Britain: Sage.

• See also the accompanying online resources here.

• Denscombe (2014): Ch. 16 Qualitative Data
• Denscombe, M. (2014). The Good Research Guide: For small-scale social research projects (5th ed.). Great Britain: Open 

University Press/McGraw-Hill Education.

• Flick (2014): Ch. 26 Thematic Coding and Content Analysis
• Flick, U. (2014). An Introduction to Qualitative Research (5th ed.). Great Britain: Sage.

• Smith, J. A., Flowers, P., & Larkin, M. (2009). Interpretative phenomenological analysis: Theory, method and 
research. London: Sage.

Adapted from Catherine Haber (catherinehaber@gmail.com)
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Outline

• Quantitative analysis
• Are my groups different?
• Does a specific variable explain the difference?
• Tools for quantitative data analysis

• Qualitative analysis
• Thematic analysis
• Analyzing observational data (e.g., videos)
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Strategies for 
Observation

•Naturalistic
•Systematic

Structure

•Participant observer
•(Self-observation)  

Participation 

105
Denscombe (2014); Bell (2006)
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Naturalistic observation

• Descriptive account of  behavioral events in their natural settings 

• Tracked chronologically over time

• Preliminary step to identify salient behaviors and environmental events 

• Approaches:
• Descriptive account 
• AEIOU
• A-B-C Observation 

106
Denscombe (2014); Hintze et al. (2002)
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Naturalistic observation: Advantages and 
disadvantages 

Advantages Disadvantages

Ease of use Inclination to over interpret 

Rich description of environment Tendency for confirmatory search 

Grounding preliminary step Limited conclusions when considered alone 

107
Hintze et al. (2002) 
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Systematic observation

• Introduces an operationalized system to observe reality

• Five characteristics: 
• Specific behaviors
• Operationally define behaviors a priori 
• Standardized procedures for observation
• Specifically selected times and places for observation
• Standardized procedures for scoring and summarizing of data

• Quantifies behavior

108
Denscombe (2014); Hintze et al. (2003) 
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Observation 
Schedules 

109

Protocol for observation 

Specifies what is being observed and how those 
things should be measured

Ensures consistency in observation across 
researchers and events à Inter-observer reliability 

Collect quantitative data based on counts, amounts, 
and frequencies

Denscombe (2014) 
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What can I observe?

110

Frequency

Hintze et al. (2003) 

Total 6 9 17
Calculate rate 6/3hr 9/3hr 17/3hr

2 per hour 3 per hour 5.6 ~6 per hour
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Duration 

What can I observe?

111Hintze et al. (2003) 
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Individual 
Attributes  

What can I observe?

112Bell (2006) 
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Combination 

What can I observe?

113Bell (2006) 
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What can I observe?

114

Frequency Duration Latency Individual 
Attributes

Combination

Denscombe (2014); Bell (2006); Hintze et al. (2003) 

Research Question 

à Plus fieldnotes! 
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Sampling and observation

• Incorporate a representative sample of the event in question

• Deliberate selection of people or events to obtain an optimal cross-
section of the research population 

• Time-sampling
• Snapshots at set intervals

• Set instances
• Tracking the activities of specific individuals one after another

115
Denscombe (2014)
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Systematic observation: Advantages and 
disadvantages 

Advantages Disadvantages

Direct data collection Behaviors not intentions

Systematic and rigorous Oversimplifies 

Efficient Lack of contextual information 

Pre-coded data Naturalness of the setting

Reliability (with training)

Quantitative data à Statistical analysis 
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