

Lecture 9 "Teach me something." Cognitive Skills for a Robot

Kim Baraka Assistant Professor Social AI group



Nov 28, 2022

#### Cognitive skills in humans?

## Non-cognitive skills in humans?

# "Cognition" is a loaded term with varying definitions

- Traditionally, "social skills" are generally considered non-cognitive
- In fact, social skills heavily rely on cognitive processes
- Social cognition: "Mental processes involved in perceiving, attending to, remembering, thinking about, and making sense of the people in our social world." (G. B. Moskowitz)

In this lecture, we take a broad view on what counts as a cognitive skill in a robot: basically any entity or process that allows a robot to process information and communicate with other similar entities, the environment, or other agents



https://www.youtube.com/watch?v=ErgfgF0uwUo

Kim Baraka - SIR '22 – Robot cognitive skills

#### Learning Objectives:

- Able to explain key challenges of integrating robot cognitive skills and various robot architecture proposals
- Able to identify/disentangle challenges in robot learning in the context of an interaction with a human
- Able to explain different human-interactive robot learning solutions
- Able to brainstorm about novel forms of human-interactive robot learning

#### PART I: ARCHITECTURES FOR "SOCIAL INTELLIGENCE" IN ROBOTS

## Motivating example: social greeting



https://www.youtube.com/watch?v=0e3pEtECwLg



https://www.youtube.com/watch?v=0e3pEtECwLg

Creating Order from Chaos: Integrating HRI



## Robot Control in See-Think-Act Cycle



Integrating high-level (symbolic) planning with low-level control.

Kim Baraka - SIR '22 – Robot cognitive skills

# Software Engineering Robot Control



• **Real-time control**: supports event-based, reactive, and distributed interactions between sensors, motors and algorithms.



• **Reuse**: architecture is generic and abstracts from specific robot platforms for reuse.



 Robustness: ensures robust robot behavior and graceful degradation of task performance in case of failures.

#### Sense-Plan-Act (SPA)



Classic version of a "pipeline" architecture.

#### Classic SPA Architecture: Benefits & Issues

#### <u>Benefit</u>:

• Integrates symbolic and non-symbolic techniques.

<u>lssues</u>:

- Robot control *slow* due to "extensive deliberation".
- Not very *robust* (no monitoring of task execution).

# Subsumption Architecture (1985)



#### Subsumption Architecture: Benefits & Issues

#### Benefits:

- Fast due to focus on behavior and tight sensor-behavior coupling (gave rise to behavior-based paradigm).
- Reactive, able to handle dynamic world due to constant sensing of the world.
  <u>Issues</u>:
- difficult to compose behaviors to achieve long-range goals.
- almost impossible to optimize robot behavior.

#### 3T or Layered Architectures



Classic examples: SSS (Connell 1991), ATLANTIS (Gat 1991), 3T (Bonasso 1991)

Kim Baraka - SIR '22 – Robot cognitive skills

# A Functional Perspective



 (highest) deliberative layer responsible for task-planning and achieving long-term goals of the robot within resource constraints.



 (middle) executive or sequencer layer responsible for choosing the current behaviors of the robot to achieve a task.



• (lowest) *behavioral control or skills layer* responsible for controlling *sensors* and *actuators*.

## BIRON (2004)





#### The Bielefeld Robot Companion

#### Armar (Univ. of Karlsruhe)





## 3T Architecture: Benefits & Issues

#### Benefits:

• Rich architecture, with different levels of abstraction and clear "roles": planning, execution (control and monitoring), and basic control layer (behaviors, ...)

#### <u>lssues</u>:

- Complex: many ways to instantiate 3T, what is best?
- How many layers: >3 layers? Perhaps 2 layers?
  - $\rightarrow$  Where to plan? Path planning at middle or highest layer?

## Social Interaction Architecture



#### Support for:

- Express emotions
- Perceive emotions
- Communicate with high-level dialog
- Model other agents
- Use social cues naturally
- Explain behavior
- Learn from interaction

#### Finding the Middle Ground



#### 2-Layered Interaction Architecture



# System 1 & 2 Architecture Design



#### Example: Attention/Engagement



#### **Technical Architecture**



#### PART II: HUMAN-INTERACTIVE ROBOT LEARNING

# Formulating a (sequential) robot learning problem: MDP

A Markov Decision Process is defined as:

- State space (S) (state variables can include features of the robot, environment, human, or a combination of the above)
- Action space (A) (actions have to be directly controllable by the robot, and assumed to be the same regardless of the state)
- Transition function T(s,s',a) = P(s'|s,a) (probabilistic)
- Reward function R(s,s',a) (sometimes R(s',a) or simply R(s') basically defines the task to optimize for)

A policy is a full mapping from states to actions  $\pi(a|s)$ . A policy can be deterministic or probabilistic. Solving an MDP requires finding an optimal policy  $\pi^*$  that maximizes a measure of utility, e.g., total or discounted sum of rewards



# Example: Pepper faces human at fixed distance

- State space (S) Position of human face in robot camera stream (x,y,z)
- Action space (A) Velocity vector of robot base  $(v_x, v_y, v_\theta)$
- Transition function T(s,s',a) Robot dynamics
- Reward function R(s'), e.g.,  $1/(1-(s'-s_{target})^2)$
- Utility: R(s1)+  $\gamma$  R(s2)+  $\gamma^2$  R(s3)+  $\gamma^3$  R(s4)+... where  $\gamma < 1$  is called discount factor



## Problems with MDP formulations

- State might not be fully observable  $\rightarrow$  Partially Observable MDPs (POMDP)
- It is often intractable to solve an MDP analytically through dynamic programming only
  → Reinforcement Learning (doesn't assume a known transition function)
  For RL approaches to Social Robotics, check out <u>this paper</u>
- There is no "correct" reward function → Reward design is an open field of research Alternative: Inverse reinforcement learning or Learning from demonstrations (recovering a reward function or learning an optimal policy directly from demonstrated trajectories)

#### Interactive reinforcement learning

- Interactive RL is an RL problem where the reward function is partially or fully provided through human (evaluative) feedback
- Advantages: more personalized robot behaviors helps leverage human knowledge in sparse reward scenarios
- Disadvantages: requires lots of training samples  $\rightarrow$  can be tedious on the user
- For more information on interactive RL, check out this video



## Interactive RL in action (credit Muhan Hou)

https://drive.google.com/file/d/1GnJCx1eQFPNOItJ5OuWxZXfUvQI\_38Td/view?usp=sharing



## Case study: Interactive Task Learning (ITL)

Interactive task learning is the problem of learning a task purely from (social) interaction with human teachers, including the goal (or reward function), an optimal plan or policy, human preferences, etc.

#### Examples of tasks for ITL

![](_page_34_Picture_1.jpeg)

Handover

![](_page_34_Picture_3.jpeg)

Pouring

![](_page_34_Picture_5.jpeg)

Ball shooting

![](_page_34_Picture_7.jpeg)

Brushstrokes

![](_page_34_Picture_9.jpeg)

Creative painting

![](_page_34_Picture_11.jpeg)

Expressive motion

#### Discussion: what components are required to make ITL happen?

- Interpreting instructions
  - Pointing
  - Gaze
  - Demonstration (visual, kinesthetic, ...)
  - Evaluative feedback
  - Corrective feedback
  - ...
- Learning
  - Learning by imitation / from demonstrations
  - Interactive RL
  - Learning from action advice
  - Evolutionary approaches

#### • Planning

- Active learning (asking questions)
- Human-robot collaboration
- Hierarchical skill acquisition

#### Inspiration from human-animal interaction?

![](_page_36_Picture_1.jpeg)

![](_page_36_Picture_2.jpeg)

![](_page_36_Picture_3.jpeg)

![](_page_36_Picture_4.jpeg)

![](_page_36_Picture_5.jpeg)

![](_page_36_Picture_6.jpeg)

#### **Exploratory Design Process**

![](_page_37_Figure_1.jpeg)

![](_page_37_Picture_2.jpeg)

![](_page_37_Picture_3.jpeg)

![](_page_37_Picture_4.jpeg)

Kim Baraka - SIR '22 – Robot cognitive skills

Nienke Schrage-Prent

![](_page_38_Picture_0.jpeg)

![](_page_38_Picture_1.jpeg)

![](_page_38_Picture_2.jpeg)

![](_page_38_Picture_3.jpeg)

![](_page_38_Picture_4.jpeg)

"Come" task

## Discussion:

# Which AI methods you expect to be useful for further developing cognitive skills of socially intelligent robots and under what assumptions?

# Socially Intelligent Robotics Project (period 3)

- Apply AI techniques to endow the Pepper robot with new social interaction skills
- Choose your own project either social cue detection or interactive robot learning
- Show a demo at the end no user studies
- Have fun!

![](_page_40_Picture_5.jpeg)