Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

  1. create a new folder in https://bitbucket.org/socialroboticshub/processing/src/master/ with the name of the service

  2. copy the certificate file https://bitbucket.org/socialroboticshub/docker/src/master/cbsr/beamforming/cert.pem from any of the other services' folders into the service’s folder

  3. copy any additional files that the services may need into the service’s folder

  4. create a factory file inheriting from the CBSRFactory in the service’s folder, and override the superclass’s methods

  5. create a service file inheriting from CBSRService in the service’s folder, and override the superclass’s methods

  6. update the https://bitbucket.org/socialroboticshub/processing/src/master/deploy_to_docker.sh file in the root folder with the new service files

  7. deploy the new service to the https://bitbucket.org/socialroboticshub/docker/src/master/ folder by running the deploy_to_docker.sh file

  8. update the https://bitbucket.org/socialroboticshub/docker/src/master/docker-compose.yml file in the docker folder with the new service

  9. update the https://bitbucket.org/socialroboticshub/docker/src/master/Dockerfile.python3 file in the docker folder with the new service’s dependencies

  10. update the topics in the constructor of the Abstract Connector from the https://bitbucket.org/socialroboticshub/connectors/src/master/python/social_interaction_cloud/ folder with the name of the new service

  11. update the device listeners in enable_service in the Abstract Connector with the service

  12. update the listened to channels in __listen in the Abstract Connector with the service

  13. create the corresponding event handler method for the service in the Abstract Connector

  14. create the corresponding event handler method for the service in the Basic Connector

  15. use the new service in a new file

The detailed explanation of these steps with a sentiment analysis example can be found below:

Too Long Still Read

  1. create a new folder in https://bitbucket.org/socialroboticshub/processing/src/master/ with the name of the service. my_service sentiment_analysis (https://bitbucket.org/socialroboticshub/docker/src/master/cbsr/sentiment/ ) will be used as the example folder and service name in this case

  2. copy the certificate file https://bitbucket.org/socialroboticshub/docker/src/master/cbsr/beamforming/cert.pem from any of the other services' folders into the my_servicefoldercreate a my_servicesentimentfolder

  3. copy the https://bitbucket.org/socialroboticshub/docker/src/master/cbsr/sentiment/classifier.pickle into the sentiment folder

  4. create a https://bitbucket.org/socialroboticshub/docker/src/master/cbsr/sentiment/sentiment_factory.py file in the my_service sentiment folder

Code Block
breakoutModewide
languagepy
from os import getcwd

from cbsr.factory import CBSRfactory
from my_servicenltk import MyServicedownload
from nltk.data class MyServiceFactory(CBSRfactory):import path

   from sentiment_service import SentimentAnalysisService


class SentimentAnalysisFactory(CBSRfactory):
    def __init__(self):
        """ MyServiceFactory constructorsuper(SentimentAnalysisFactory, self).__init__()

      def get_connection_channel(self):
     inherit from the CBSRfactory constructor to create the new service as a service
  return 'sentiment_analysis'

    def create_service(self, connect, identifier, disconnect):
     """   return SentimentAnalysisService(connect, identifier, disconnect)


super(MyServiceFactory, self).if __initname__() 
    def get_connection_channel(self)== '__main__':
    cwd = getcwd()
 """ initialise the name of the service Redis channel
  download('punkt', download_dir=cwd)
    download('omw-1.4', download_dir=cwd)
      """download('averaged_perceptron_tagger', download_dir=cwd)
        return 'my_service'
download('wordnet', download_dir=cwd)
    def create_service(self, connect, identifier, disconnect):path.append(cwd)

       return MyService(connect, identifier, disconnect)


if __name__ == '__main__':
    my_sentiment_analysis_factory = MyServiceFactorySentimentAnalysisFactory()
    mysentiment_analysis_factory.run()

45. create a my_ https://bitbucket.org/socialroboticshub/docker/src/master/cbsr/sentiment/sentiment_service.py file in the my_service sentiment folder

Code Block
breakoutModewide
languagepy
""" This file shows an example of a mocksentiment service that uses the text_transcript channel result
    from the Dialogflow speech-to-text andto publishesget it intothe the newtype my_service channel.
of sentiment
"""

from pickle Theimport fileload
canfrom bere extendedimport tosub
asfrom manystring servicesimport aspunctuation
necessary
"""

from cbsr.service import CBSRservice
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.tag import pos_tag
from nltk.tokenize import word_tokenize


class MyServiceSentimentAnalysisService(CBSRservice):
    def __init__(self, connect, identifier, disconnect):
        super(MyServiceSentimentAnalysisService, self).__init__(connect, identifier, disconnect)
     def get_device_types(self)   with open('classifier.pickle', 'rb') as pickle:
        """ :return list of devicesself.classifier the service uses= load(pickle)
        self.lemmatizer = WordNetLemmatizer()

 This method returns a list of all the devices my_service uses; in this case, only the microphone
        """
        def get_device_types(self):
        return ['mic']

    def get_channel_action_mapping(self):
        """ :return key-value dictionary pairing, with listened channel as key and linked method as value;{self.get_full_channel('text_transcript'): self.execute}

    def execute(self, message):
        sentence = message['data'].decode()
        tokens    multiple channels can be listened to, linked to a method when separated by a comma in the output dictionary= self.remove_noise(word_tokenize(sentence))
        sentiment = self.classifier.classify(dict([token, True] for token in tokens))
        print(sentiment)
     Use an already-existing channel and links it to a method to be called when there is a message in the channel
            The channel should correspond to one of the topics in abstract_connector.py; 
            in this case, my_service uses the text_transcript channel and links it to the method self.execute
        """
        return {self.get_full_channel('text_transcript'): self.execute}

    def execute(self, message):
        """ :param message: the message published in the channel the method was linked to
            This method decodes the data received in the channel it was linked to and further publishes
            a message in the new service channel
            Extra functionalities can be added to the method
        """
        sentence = message['data'].decode()
        self.publish('mytext_servicesentiment', sentencesentiment)
...

56. update the https://bitbucket.org/socialroboticshub/processing/src/master/deploy_to_docker.sh file in the root folder with the new service files

Code Block
breakoutModewide
languagebash
...
echo Deploying my_service...
cd ../my_service
cp -f {cert.pem,  *.py, classifier.pickle} ../../docker/cbsr/my_service    # extra files can be copied if used
...

67. deploy the new service to the https://bitbucket.org/socialroboticshub/docker/src/master/ folder by running the deploy_to_docker.sh file

78. update the https://bitbucket.org/socialroboticshub/docker/src/master/docker-compose.yml file in the docker folder with the new service

Code Block
breakoutModewide
...
# ------------------------------------------------------------
# MySentiment serviceAnalysis
# ------------------------------------------------------------
mysentiment_serviceanalysis:
  image: python3
  build:
    context: .
    dockerfile: Dockerfile.python3
  hostname: mysentiment_serviceanalysis
  user: "${NEW_UID}:${NEW_GID}"
  env_file:
    - ./.env

  working_dir: /my_service
  command: python3 my_servicesentiment_factory.py
  volumes:
    - ./cbsr/mock:/my_servicesentiment:rw${MOUNT_OPTIONS}

  tty: true
  stdin_open: false

  networks:
    app_net:
      ipv4_address: 172.16.238.x   # address has to differ from those of the already existing services' 

  depends_on:
    - redis
    - dialogflow
  # - any other services my_service depends on

...

existing services' 

  depends_on:
    - redis
    - dialogflow
  # - any other services the service depends on
...

9. update the https://bitbucket.org/socialroboticshub/docker/src/master/Dockerfile.python3 file in the docker folder with the new service’s dependencies

Code Block
RUN pip3 install --no-cache-dir --upgrade --prefer-binary \
	redis~=4.1 \
	hiredis~=2.0 \
	simplejson~=3.17 \
	Pillow~=9.0 \
	numpy~=1.22 \
	imutils~=0.5 \
	[any other dependendencies] \
	...

10. update the topics in the constructor of the Abstract Connector abstract_connector.py from the https://bitbucket.org/socialroboticshub/connectors/src/master/python/social_interaction_cloud/ folder with the name of the new service

topics = [..., 'mytext_servicesentiment']

911. update the corresponding list of devices listeners in enable_service in abstract_connector.py with my_service

Code Block
languagepy
...
###########################
# Management              #
###########################

def enable_service(self, name: str) -> None:
    ...
    elif ... and name == 'mysentiment_serviceanalysis':
        for mic in self.devices[self.device_types['mic']]:
            pipe.publish(name, mic)
    ...

1012. update the channels in __listen in abstract_connector.py with my_service

Code Block
languagepy
...
elif channel = 'mytext_servicesentiment':
    self.on_mytext_servicesentiment(message=data.decode('utf-8'))
...

1113. create the corresponding event handler method on_my_service in abstract_connector.py

Code Block
languagepy
...
###########################
# Event handlers          #
###########################
...
def on_mytext_servicesentiment(self, message: str) -> None:
    pass
...

1214. create the corresponding inherited event handler method on_my_service in basic_connector.py

Code Block
breakoutModewide
languagepy
...
###########################
# Event handlers          #
###########################
...
def on_mytext_servicesentiment(self, message: str) -> None:
    """ :param message: the message published on the mytext_servicesentiment channel
        This method notifies the listeners that a new message has been posted on the my_service channel;
        This method can be further inherited and overridden
    """
    self.__notify_listeners('onMyService', message)
...

13. use the new service by creating a new file my_service_example.pyand running it

Code Block
breakoutModewide
languagepy
from social_interaction_cloud.action import ActionRunner
from social_interaction_cloud.basic_connector import BasicSICConnector

class MyConnector(BasicSICConnector):
    def __init__(self, server_ip: str):
        """ :param server_ip:
            This method inherits the BasicSICConnector and enables the new my_service service;
            my_service needs to be manually enabled in this way
        """
 has been posted on the text_sentiment channel;
        This method can be further inherited and overridden
    """
    self.__notify_listeners('onTextSentiment', message)
...

15. use the new service by creating a new file sentiment_example.py, overriding the on_text_sentiment method and running it

Code Block
breakoutModewide
languagepy
from enum import Enum
from functools import partial
from social_interaction_cloud.action import ActionRunner
from social_interaction_cloud.basic_connector import BasicSICConnector

class SentimentConnector(BasicSICConnector):
    def __init__(self, server_ip: str, dialogflow_key_file: str, dialogflow_agent_id: str):
        super(SentimentConnector, self).__init__(server_ip, 'en-US', dialogflow_key_file, dialogflow_agent_id)
       super(MyConnector, self).enable__init__(server_ipservice('sentiment_analysis')
        self.enable_service('my_service')sentiment = None
    
    def on_mytext_servicesentiment(self, messagesentiment: str) -> None:
        """ :param message: message published in the my_service channel
    print(sentiment)
        self.sentiment = sentiment

class Example:
    def __init__(self, server_ip: str, dialogflow_key_file: str, dialogflow_agent_id: str):
       This methodself.sic overrides the event function on_my_service inherited from the BasicSICConnector= SentimentConnector(server_ip, dialogflow_key_file, dialogflow_agent_id)
        self.action_runner = ActionRunner(self.sic)

 """       self.recognition_manager = printRecognitionManager(message2)
        self.stop().user_model = {}
...