Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Table of Contents
minLevel1
maxLevel2
outlinefalse
typelist
printablefalse

We have taken you by the hand thus far and walked you through the code you were asked to produce step-by-step. We will still be providing useful information for you to learn more about developing conversational agents, but now we will change gears a bit and leave more for you to figure out yourself, too. Remember that you can find useful information and links on the page.

Prolog and Patterns

Repair

When a conversational agent does not understand a user, it needs to have the conversational competence to deal with the situation. Here, we will make two important distinctions related to the type of misunderstanding. The first case is that the agent is not able to match what a user says with an intent and the Dialogflow agent matches with a fallback intent. The second case is quite different. Here the Dialogflow agent can make sense of what a user says and matches it with one of the intents created for that agent. The conversational agent, however, has trouble handling the intent within the conversational context as defined by the active conversational pattern. In other words, the intent does not fit into that pattern and the question is how the agent should deal with this. We provide two repair mechanisms using (somewhat special) patterns again for the agent to deal with each of these situations.

...

Info

A similar design choice for specifying the response applies to the describeCapability as to the contextMismatch(Intent) intent, although for somewhat different reasons. As Moore and Arar, 2019, also argue, a long presentation of the agent’s capabilities in a conversational interaction does not work in practice. In other words, specifying a long text for the agent’s response is not very suitable for a conversational agent. A more conversational approach would be to refine the response and take the context where a user asks what the agent can do into account. You thus could also consider using the text/3 predicate that allows specifying context and design responses that are different for each of these contexts when a user asks for help.

Visuals

You can update the visuals based on what you think will help the user the most. Think about how you can support the implemented capability visually.

...

Info

All done?

Proceed with Confirmation and Closing .