Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 7 Next »

This page offers an overview about what a service could be (or not) and the (detailed) steps of how to integrate it into the SIC Framework. The code for all the existing services can be found at https://bitbucket.org/socialroboticshub/processing/src/master/.

What Is (Not) a Service?

Do’s

A service is required to:

  • use input from a device and/or another service

  • do more than 1 line of code in processing

  • give output that is useful for another service and/or an application

Additionally, it should be reusable/generic (i.e. more than 1 specific application can make use of the service).

Do’nts

A service should only relate to the software aspect of the SIC framework. An example of what would NOT count as a service is integrating both a third-party device (e.g.: smartwatch) and the data collected from it into an application. In this case, the device should be added separately as one, and the data collection and processing should be turned into a service itself.

Summary How to Add a Service to the SIC Framework

  1. create a new folder in https://bitbucket.org/socialroboticshub/processing/src/master/ with the name of the service

  2. copy the certificate file https://bitbucket.org/socialroboticshub/docker/src/master/sic/beamforming/cert.pem from any of the other services' folders into the service’s folder

  3. copy any additional files that the services may need into the service’s folder

  4. create a factory file inheriting from the SICfactory in the service’s folder, and override the superclass’s methods

  5. create a service file inheriting from SICservice in the service’s folder, and override the superclass’s methods

  6. update the https://bitbucket.org/socialroboticshub/processing/src/master/deploy_to_docker.sh file in the root folder with the new service files

  7. deploy the new service to the https://bitbucket.org/socialroboticshub/docker/src/master/ folder by running the deploy_to_docker.sh file

  8. update the https://bitbucket.org/socialroboticshub/docker/src/master/docker-compose.yml file in the docker folder with the new service

  9. update the https://bitbucket.org/socialroboticshub/docker/src/master/Dockerfile.python3 file in the docker folder with the new service’s dependencies

  10. update the topics in the constructor of the Abstract Connector from the https://bitbucket.org/socialroboticshub/connectors/src/master/python/social_interaction_cloud/ folder with the name of the new service

  11. update the device listeners in enable_service in the Abstract Connector with the service

  12. update the listened to channels in __listen in the Abstract Connector with the service

  13. create the corresponding event handler method for the service in the Abstract Connector

  14. create the corresponding event handler method for the service in the Basic Connector

  15. use the service in a new file

The detailed explanation of these steps with a sentiment analysis example can be found below:

Detailed How to Add a (Sentiment) Service to the SIC Framework

  1. create a new folder in https://bitbucket.org/socialroboticshub/processing/src/master/ with the name of the service. sentiment_analysis (https://bitbucket.org/socialroboticshub/docker/src/master/sic/sentiment/ ) will be used as the example folder and service in this case

  2. copy the certificate file https://bitbucket.org/socialroboticshub/docker/src/master/sic/beamforming/cert.pem from any of the other services' folders into the sentimentfolder

  3. copy the https://bitbucket.org/socialroboticshub/docker/src/master/sic/sentiment/classifier.pickle into the sentiment folder

  4. create a https://bitbucket.org/socialroboticshub/docker/src/master/sic/sentiment/sentiment_factory.py file in the sentiment folder

from os import getcwd

from sic.factory import SICfactory
from nltk import download
from nltk.data import path

from sentiment_service import SentimentAnalysisService


class SentimentAnalysisFactory(SICfactory):
    def __init__(self):
        super(SentimentAnalysisFactory, self).__init__()

    def get_connection_channel(self):
        return 'sentiment_analysis'

    def create_service(self, connect, identifier, disconnect):
        return SentimentAnalysisService(connect, identifier, disconnect)


if __name__ == '__main__':
    cwd = getcwd()
    download('punkt', download_dir=cwd)
    download('omw-1.4', download_dir=cwd)
    download('averaged_perceptron_tagger', download_dir=cwd)
    download('wordnet', download_dir=cwd)
    path.append(cwd)

    sentiment_analysis_factory = SentimentAnalysisFactory()
    sentiment_analysis_factory.run()

5. create a https://bitbucket.org/socialroboticshub/docker/src/master/sic/sentiment/sentiment_service.py file in the sentiment folder

""" This file shows an example of a sentiment service that uses the text_transcript channel result
    from the Dialogflow speech-to-text to get the the type of sentiment
"""

from pickle import load
from re import sub
from string import punctuation

from sic.service import SICservice
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.tag import pos_tag
from nltk.tokenize import word_tokenize


class SentimentAnalysisService(SICservice):
    def __init__(self, connect, identifier, disconnect):
        super(SentimentAnalysisService, self).__init__(connect, identifier, disconnect)
        with open('classifier.pickle', 'rb') as pickle:
            self.classifier = load(pickle)
        self.lemmatizer = WordNetLemmatizer()

    def get_device_types(self):
        return ['mic']

    def get_channel_action_mapping(self):
        return {self.get_full_channel('text_transcript'): self.execute}

    def execute(self, message):
        sentence = message['data'].decode()
        tokens = self.remove_noise(word_tokenize(sentence))
        sentiment = self.classifier.classify(dict([token, True] for token in tokens))
        print(sentiment)
        self.publish('text_sentiment', sentiment)
...

6. update the https://bitbucket.org/socialroboticshub/processing/src/master/deploy_to_docker.sh file in the root folder with the new service files

...
echo Deploying sentiment_analysis...
cd ../audio_sentiment
cp -f {cert.pem,classifier.pickle,*.py} ../../docker/sic/sentiment    # extra files should also be inclduded here
...

7. deploy the new service to the https://bitbucket.org/socialroboticshub/docker/src/master/ folder by running the deploy_to_docker.sh file

8. update the https://bitbucket.org/socialroboticshub/docker/src/master/docker-compose.yml file in the docker folder with the new service

...
  # ------------------------------------------------------------
  # Sentiment Analysis service
  # ------------------------------------------------------------
  sentiment_analysis:
    image: sic_python3
    build:
      context: .
      dockerfile: Dockerfile.python3
    user: "${UID}:${GID}"
    env_file:
      - ./.env

    working_dir: /sentiment
    command: python3 sentiment_factory.py
    
    volumes:
      - ./sic/sentiment:/sentiment:rw,delegated

    tty: true
    stdin_open: false

    depends_on:
      - redis
      - dialogflow

  # - any other services the service depends on
...

9. update the https://bitbucket.org/socialroboticshub/docker/src/master/Dockerfile.python3 file in the docker folder with the new service’s dependencies

RUN pip3 install --no-cache-dir --upgrade --prefer-binary \
	redis~=4.1 \
	hiredis~=2.0 \
	simplejson~=3.17 \
	Pillow~=9.0 \
	numpy~=1.22 \
	imutils~=0.5 \
	[any other dependendencies] \
	...

10. update the topics in the constructor of the Abstract Connector abstract_connector.py from the https://bitbucket.org/socialroboticshub/connectors/src/master/python/social_interaction_cloud/ folder with the name of the new service

topics = [..., 'text_sentiment']

11. update the corresponding list of devices listeners in enable_service in abstract_connector.py with my_service

...
###########################
# Management              #
###########################

def enable_service(self, name: str) -> None:
    ...
    elif ... and name == 'sentiment_analysis':
        for mic in self.devices[self.device_types['mic']]:
            pipe.publish(name, mic)
    ...

12. update the channels in __listen in abstract_connector.py with my_service

...
elif channel = 'text_sentiment':
    self.on_text_sentiment(message=data.decode('utf-8'))
...

13. create the corresponding event handler method on_my_service in abstract_connector.py

...
###########################
# Event handlers          #
###########################
...
def on_text_sentiment(self, message: str) -> None:
    pass
...

14. create the corresponding inherited event handler method on_my_service in basic_connector.py

...
###########################
# Event handlers          #
###########################
...
def on_text_sentiment(self, message: str) -> None:
    """ :param message: the message published on the text_sentiment channel
        This method notifies the listeners that a new message has been posted on the text_sentiment channel;
        This method can be further inherited and overridden
    """
    self.__notify_listeners('onTextSentiment', message)
...

15. use the new service by creating a new file sentiment_example.py, overriding the on_text_sentiment method and running it

from enum import Enum
from functools import partial
from social_interaction_cloud.action import ActionRunner
from social_interaction_cloud.basic_connector import BasicSICConnector

class SentimentConnector(BasicSICConnector):
    def __init__(self, server_ip: str, dialogflow_key_file: str, dialogflow_agent_id: str):
        super(SentimentConnector, self).__init__(server_ip, 'en-US', dialogflow_key_file, dialogflow_agent_id)
        self.enable_service('sentiment_analysis')
        self.sentiment = None
    
    def on_text_sentiment(self, sentiment: str) -> None:
        print(sentiment)
        self.sentiment = sentiment

class Example:
    def __init__(self, server_ip: str, dialogflow_key_file: str, dialogflow_agent_id: str):
        self.sic = SentimentConnector(server_ip, dialogflow_key_file, dialogflow_agent_id)
        self.action_runner = ActionRunner(self.sic)

        self.recognition_manager = RecognitionManager(2)
        self.user_model = {}
...

  • No labels